Homological Dimension of Smash Product over Quasitriangular Weak Hopf Algebra

نویسندگان

  • Zhong-wei Wang
  • ZHONG-WEI WANG
چکیده

Let (H,R) be a quasitriangular weak Hopf algebra, and A a quantum commutative weak H-module algebra. We establish the relationship of homological dimensions between weak smash product algebra A#H and A under some conditions. As an application, we consider the case of twisted weak Hopf algebra. Mathematics Subject Classification (2010): 16T05

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gorenstein global dimensions for Hopf algebra actions

Let $H$ be a Hopf algebra and $A$ an $H$-bimodule algebra‎. ‎In this paper‎, ‎we investigate Gorenstein global dimensions for Hopf‎ ‎algebras and twisted smash product algebras $Astar H$‎. ‎Results from‎ ‎the literature are generalized‎. 

متن کامل

Smash (co)products and Skew Pairings

Let τ be an invertible skew pairing on (B,H), where B and H are Hopf algebras in a symmetric monoidal category C with (co)equalizers. Assume that H is quasitriangular. Then we obtain a new algebra structure such that B is a Hopf algebra in the braided category HYD and there exists a Hopf algebra isomorphism w : B∞H → B τH in C, where B∞H is a Hopf algebra with (co)algebra structure the smash (c...

متن کامل

N ov 2 00 3 HOMOLOGICAL DIMENSION OF CROSSED PRODUCTS ∗

Throughout this paper, k is a field, R is an algebra over k, and H is a Hopf algebra over k. We say that R# σ H is the crossed product of R and H if R# σ H becomes an algebra over k by multiplication: (a#h)(b#g) = h,g a(h 1 · b)σ(h 2 , g 1)#h 3 g 2 Let lpd(R M), lid(R M) and lf d(R M) denote the left projective dimension, left injective dimension and left flat dimension of left R-module M, resp...

متن کامل

quasitriangular Quasi - Hopf algebra structure of minimal models

The chiral vertex operators for the minimal models are constructed and used to define a fusion product of representations. The existence of com-mutativity and associativity operations is proved. The matrix elements of the associativity operations are shown to be given in terms of the 6-j symbols of the weak quasitriangular quasi-Hopf algebra obtained by truncating U q (sl(2)) at roots of unity.

متن کامل

Skew Calabi-yau Algebras and Homological Identities

A skew Calabi-Yau algebra is a generalization of a Calabi-Yau algebra which allows for a non-trivial Nakayama automorphism. We prove three homological identities about the Nakayama automorphism and give several applications. The identities we prove show (i) how the Nakayama automorphism of a smash product algebra A#H is related to the Nakayama automorphisms of a graded skew Calabi-Yau algebra A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015